Parallel hybrid iterative methods for variational inequalities, equilibrium problems and common fixed point problems

نویسندگان

  • P. K. Anh
  • D. V. Hieu
چکیده

In this paper we propose two strongly convergent parallel hybrid iterative methods for finding a common element of the set of fixed points of a family of asymptotically quasi φ-nonexpansive mappings, the set of solutions of variational inequalities and the set of solutions of equilibrium problems in uniformly smooth and 2-uniformly convex Banach spaces. A numerical experiment is given to verify the efficiency of the proposed parallel algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Iterative Scheme for Generalized Equilibrium, Variational Inequality and Fixed Point Problems Based on the Extragradient Method

The problem ofgeneralized equilibrium problem is very general in the different subjects .Optimization problems, variational inequalities, Nash equilibrium problem and minimax problems are as special cases of generalized equilibrium problem. The purpose of this paper is to investigate the problem of approximating a common element of the set of generalized equilibrium problem, variational inequal...

متن کامل

Common solutions to pseudomonotone equilibrium problems

‎In this paper‎, ‎we propose two iterative methods for finding a common solution of a finite family of equilibrium problems ‎for pseudomonotone bifunctions‎. ‎The first is a parallel hybrid extragradient-cutting algorithm which is extended from the‎ ‎previously known one for variational inequalities to equilibrium problems‎. ‎The second is a new cyclic hybrid‎ ‎extragradient-cutting algorithm‎....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015